
Dynamic host configuration, please
Florian Obser

florian@openbsd.org

Abstract— Smartphones are always online devices in urban
areas. They are even mostly online in rural areas. They deal
with many different kinds of networks with only minimal con-
figuration from the user. This paper will cover how we achieved
a similar user experience on OpenBSD laptops. We will cover
how we remember past visited Wi-Fi networks, automatically
configuring IPv4 and IPv6 addresses and dealing with DNS in
challenging network environments. We will also point out security
measurements we put in place while dealing with untrusted
networks.

I. JOIN THE WI-FI

When we bring a device to a never-before-visited network
location we need the network name and password for the Wi-
Fi or select an open Wi-Fi network.

Smartphones provide a user interface (UI) for this where
we select the Wi-Fi from a drop-down list and then we are
prompted for a password.

On OpenBSD, network interfaces are configured by ifcon-
fig(8), or persistently in /etc/hostname.IF1, which is read by
netstart(8) during boot. netstart(8) calls ifconfig(8) internally
to handle the network configuration. # ifconfig iwm0
scan will list the available Wi-Fi networks for the iwm0
interface.

For a long time, we could only configure one Wi-Fi net-
work:

$ cat /etc/hostname.iwm0
nwid home wpakey "trivial password"
inet autoconf
inet6 autoconf
up

This configures a Wi-Fi network named "home" and a
password "trivial password". IPv4 and IPv6 auto-configuration
are enabled. Whenever the network is in range the kernel
automatically connects to it.

That is not a good user experience (UX). We typically take
our laptops with us and connect to different Wi-Fi networks,
like our smartphones. We have a Wi-Fi at home, at work, there
are open Wi-Fis at hotels, and so on.

People came up with all kinds of unusual shell scripts that
would run in the background or were triggered by cron(8) to
notice when the laptop moved to a different Wi-Fi. The script
would then call ifconfig(8) to reconfigure Wi-Fi from a list of
networks it knew about. This was all fragile and unlike how
OpenBSD works.

1IF denotes a specific network interface. For example for iwm0 the file is
/etc/hostname.iwm0

Peter Hessler (phessler@), with the help of Stefan Sperling
(stsp@) went ahead and tackled this problem: what if we could
pass multiple (name, password) tuples to the kernel and
the kernel would choose the right one?

$ cat /etc/hostname.iwm0
join home wpakey "trivial password"
join work wpakey zUDciIezevfySqam
join "Airport Wi-Fi"
join ""
inet autoconf
inet6 autoconf
up

join implements exactly this. The argument to join is
the name of the network and the following wpakey is the
password for that network. If we leave out the wpakey, the
Wi-Fi is open and does not require a password. Using join
with the empty string (join "") means the kernel will try
to connect to any open Wi-Fi if no Wi-Fi from the join-list is
found first.

We still need to configure the name and password by editing
a file in /etc/ and run netstart(8) when we encounter a
new Wi-Fi. This is probably not the best UI2 but the UX
is pretty good and on par with a smartphone. Once the Wi-Fi
has been configured by adding a join line, the kernel will
automatically reconnect to a known Wi-Fi whenever it comes
within range.

II. STOP SLACKING

Now that we are connected to the Wi-Fi, we need to
configure IP addresses.

We started our efforts to improve the network configuration
user experience with IPv6 for two reasons. One is that IPv6 is
still a technology for early adopters who are used to difficulties
when using new technologies and are eager to help debug the
problems that might arise.

Another reason for our work was the fact that OpenBSD
got IPv6 support from the KAME project in the late 1990s
and early 2000s after which it quieted down again. The
network configuration was handled mostly in the kernel, so
there was no isolation from malicious input. For the most
part it assumed a stationary workstation that tried to acquire
an IPv6 prefix for stateless address auto-configuration during
boot by sending three router solicitations and then listened for
router advertisements to create auto-configuration addresses
and renewed their lifetimes when a new advertisement flew

2ed(1) is the pinnacle of UI design, as far as the author is concerned.

https://man.openbsd.org/ifconfig.8
https://man.openbsd.org/ifconfig.8
https://man.openbsd.org/hostname.if.5
https://man.openbsd.org/netstart.8
https://man.openbsd.org/cron.8

by. There was some rudimentary code in rtsold(8) to handle
movement between networks, but it was rarely used since it
was optional. rtsold(8) was used in one-shot mode where it
would send at most three router solicitations when an interface
connected to the network and then it would exit.

We started to write slaacd(8) and once that was working we
could delete rtsold(8) and remove considerable pieces of code
from the kernel.

slaacd(8) is a privilege-separated network daemon that build
previous experience with privilege separation in OpenBSD. It
uses three processes, (1) the parent process to configure the
system, (2) the frontend process to talk to the outside world
and (3) the engine process to handle untrusted data and run
a state machine for the stateless address auto-configuration
protocol.

pledge(2) restricts what a process is allowed to do and
this is enforced by the kernel. Enforcement means that the
kernel will terminate processes that violate what they have
pledged to do. The pledges themselves are in broad strokes,
we do not concern ourselves with single system calls but with
groups of system calls. For example, the process is allowed to
interact with open file descriptors ("stdio"), it is allowed
to open connections to hosts on the Internet ("inet"), and
it is allowed to open files for reading ("rpath").

The parent process pledges that it will only open new
network sockets, send those to other processes and reconfigure
the routing table ("stdio inet sendfd wroute"). The
frontend process pledges to only receive file descriptors, open
unix domain sockets and check the state of the routing table
("stdio unix recvfd route"). Checking the routing
table includes seeing which flags are configured per interface.
The engine process pledges to only read and write to already
open file-descriptors ("stdio"). The engine process is very
restricted in what it is allowed to do. This is important because
it handles untrusted data coming from the network. While the
frontend process talks to the network, it never looks at the data.
An attacker will not be able to confuse the frontend process
with data they send. They can and have confused the engine
process.

For more details see "Privilege drop, privilege separation,
and restricted-service operating mode in OpenBSD".

slaacd(8) is enabled per default on all OpenBSD installa-
tions.

IPv6 stateless address auto-configuration is enabled on
an interface by setting the AUTCONF6 flag using ifcon-
fig(8): ifconfig iwm0 inet6 autoconf. The kernel
announces this changed interface flag to the whole system us-
ing a broadcast route message. slaacd(8) reads those messages
using a route(4) socket.

slaacd(8) handles all aspects of stateless address auto-
configuration. It sends router solicitations when needed, either
multi-cast or uni-cast, depending on which is appropriate. It
waits for router advertisements, parses them, and configures
default routes, global and temporary IPv6 addresses, and
passes name server information via a route message to the rest
of the system. It takes care of the lifetimes of addresses, default

routes, and name server information expiring and removes
those from the system when no router advertisements are
received to extend the lifetime.

slaacd(8) also monitors when network interfaces regain their
connection to a network. For example because the laptop woke
up from suspension or it got moved out of range of a Wi-Fi
network and moved back within range. It then needs to find
out whether it connected to the same network as before or
whether it is now in a new network. If it is a new network
we need to replace the old addresses, default route and name
servers. If there is no IPv6 available it needs to remove the
old information.

The stateless address auto-configuration specification allows
multiple default routers being present on the same layer-two
network, announcing the same or different network informa-
tion. slaacd(8) tries to handle this, but this has not been
extensively tested in all possible cases. There are still open
questions being discussed at the IETF on how to run networks
with different network prefixes in the same layer-two network.

slaacd(8) is able to handle multiple interfaces and we will
show later how we pick the right source address when multiple
addresses are available to choose from.

III. DYNAMIC HOST CONFIGURATION, PLEASE

With IPv6 address configuration mostly solved, it was time
to look at IPv4 again. We used a fork of ISC’s dhclient(8).
Henning Brauer (henning@) added privilege-separation to
it and Kenneth Westerback (krw@) has been maintaining
it in the past few years. However, the privilege-separation
was never quite right which became more visible with the
integration of pledge(2) and it turned out to be difficult to
integrate some of the features we developed in slaacd(8).

It was time to write a new daemon and Otto Moerbeek
(otto@) came up with a name for it: dhcpleased(8). It is
pronounced as "dynamic host configuration, please" with the
"d" silent.

On a very high level, IPv4 DHCP and IPv6 stateless
address auto-configuration are very similar. We request some
information from the router3, we use it to configure the system
and we make sure that information does not expire. When we
move networks we need to probe whether our information is
still up to date and if not, reconfigure the system.

We opted for the obvious solution, which is to copy
sbin/slaacd to sbin/dhcpleased and replace the IPv6
specific bits with IPv4 specific bits.

On paper DHCP looks more complicated than IPv6 stateless
address auto-configuration because it negotiates with the server
and there is a complicated state machine to implement.

In practice it is the other way around. The "stateless" part
in IPv6 does not apply to the client. The client must keep state
and implement a state machine to keep track of which routers
are available and when various information expires. In IPv4
we talk to one server and all information expires at the same
time.

3In IPv6 we might not need to request the information, it might just show
up unannounced.

https://man.openbsd.org/slaacd.8
https://ftp.openbsd.org/pub/OpenBSD/patches/7.0/common/014_slaacd.patch.sig
privsep.org
privsep.org
https:///man.openbsd.org/ifconfig.8
https:///man.openbsd.org/ifconfig.8
https://man.openbsd.org/route.4

We will talk about a few differences between slaacd(8) and
dhcpleased(8) in a moment, but from the user perspective both
behave in the same way. They make sure that the address
configuration and default gateway are always up to date and
they pay attention when the machine moves between networks,
either while awake or while sleeping.

Because dhcpleased(8) has to use bpf(4) instead of regular
sockets for some of the network packets it needs to send,
the parent process cannot use pledge(2). Currently, there is
nothing it could pledge that would allow the usage of bpf(4).
To protect the system and prevent exfiltration of sensitive data
we use unveil(2) to restrict the parent process’ view of the
file system. dhcpleased(8) can only read its configuration file,
read and write /dev/bpf, and read, write and create files
underneath /var/db/dhcpleased/ to store information
about received leases.

While we could get away with not implementing a config
file for slaacd(8), this did not work for dhcpleased(8). Some
systems out there will only give us a DHCP lease if we send
the correct client id, for example.

There are many DHCP options specified in RFC 2132. We
have only implemented the bare minimum, only the options
we need and can handle. We do not need a swap server or a
cookie server, to name a few.

Like slaacd(8), dhcpleased(8) is enabled on all OpenBSD
installations.

IV. ROUTE PRIORITIES

dhcpleased(8) and slaacd(8) can handle multiple interfaces
at the same time. The routing table might look like this:

$ netstat -nrf inet \
| awk "{print $1,$2,$7,$8}"

Routing tables

Internet:
Destination Gateway Prio Iface
default 192.168.1.1 8 em0
default 192.168.178.1 12 iwm0
[...]

We end up with two default routes, one gateway is reachable
via the em0 interface with priority value 8 and the other
gateway is reachable via the iwm0 interface with priority value
12. A route has higher priority when its priority value is lower.
em0 is an Ethernet interface and it gets higher priority over the
Wi-Fi interface iwm0. All things being equal, the kernel will
pick the address from em0 as source address when making
a new connection to the internet and route traffic over the
Ethernet interface, which is presumably faster.

If we pick up the laptop and unplug the Ethernet interface,
the route over em0 is no longer usable and existing connections
using it will stall and time out. New connections will instead
use iwm0.

If we plug the Ethernet interface em0 back in, the session
might come alive again and new connections will use em0.

Connections that are running over iwm0 will continue working,
because the interface is still connected to the Wi-Fi.

Applications like web browsers, email clients or even video
conferencing systems will automatically establish a new con-
nection when they notice that the old one is dead.

Unfortunately ssh(1) is not one of them. If switching
between wired and wireless happens rarely, tmux(1) on the
remote system might help with ssh(1) disconnects, or a wg(4)
tunnel can be used so that the source address does not change
when switching between wired and wireless.

V. CELLULAR NETWORKS

In addition to Ethernet and Wi-Fi networks, OpenBSD
supports "Mobile Broadband Interface Model" devices using
the umb(4) driver. These can be used to connect to UMTS
or LTE networks. They require a SIM card and after being
configured using a PIN they will connect to cellular networks
and automatically configure an IP address and default route.
The default route has an even lower route priority than Wi-
Fi so it will only be used when Ethernet and Wi-Fi are not
connected.

VI. IT IS ALWAYS DNS

Humans are not particularly good at remembering addresses
like 2606:2800:220:1:248:1893:25c8:1946 and
are much better with names like example.com. When we
run ping6 example.com we will end up in libc’s stub
resolver. It will open /etc/resolv.conf and look for
nameserver lines to use for DNS resolution.

We can learn name servers from dhcpleased(8), slaacd(8),
umb(4), and iked(8). Historically dhclient(8) owned
/etc/resolv.conf, which means that no other process
could add name servers to it. dhclient(8) would just overwrite
whatever was in there whenever it renewed its lease. This
made it impossible to sometimes move to an IPv6-only
network. slaacd(8) could not configure name servers and the
left-over IPv4 name servers were not reachable.

We can either teach all name server sources to somehow co-
operate and share responsibility of /etc/resolv.conf or
we can run an arbitrator that collects name servers from diverse
sources and handles the contents of /etc/resolv.conf.

resolvd(8) is such an arbitrator. It is another always enabled
daemon. It collects name servers from all the mentioned
sources and adds them to /etc/resolv.conf.

It also monitors if /etc/resolv.conf gets edited in
which case it rereads the file and makes sure that the learned
name servers are at the beginning of the file. This is useful
when the administrator of the machine decides to add options
to /etc/resolv.conf. For example, we can edit the file
and add family inet6 inet to prefer IPv6 over IPv4
and resolvd(8) will cope. There is no need for an extra
configuration file, /etc/resolv.conf is the configuration
file.

Name servers are announced using route messages and re-
solvd(8) listens for them using a route(4) socket. They can also
be observed using the route(8) tool: $ route monitor.

https://man.openbsd.org/bpf.4
https://man.openbsd.org/unveil.2
https://man.openbsd.org/ssh.1
https://man.openbsd.org/tmux.1
https://man.openbsd.org/wg.4
https://man.openbsd.org/umb.4
https://man.openbsd.org/asr_run.3
https://man.openbsd.org/asr_run.3
https://man.openbsd.org/iked.8
https://man.openbsd.org/resolvd.8
https://man.openbsd.org/route.8

resolvd(8) can also request that name servers are re-
announced by their sources. This is useful when resolvd(8)
gets restarted.

VII. LET US UNWIND A BIT

Plain DNS is not a secure protocol. It exchanges unau-
thenticated UDP packets without any integrity protection. This
makes it easy for an attacker to spoof answer packets.

DNS answer packets are untrusted data, they come from the
network. However, the process that sends DNS queries and
parses the answer using the libc functions is almost always
the single main process of the tool. When we run ping
example.com, DNS packets are parsed using our user. An
attacker who can spoof a DNS answer might be able to trigger
a bug in libc and gain code execution that way.

On OpenBSD, ping(8) pledges "stdio DNS" so the at-
tacker will not get very far, but there are many more programs
in ports that are not pledged that might want to resolve names.

It would be worthwhile to have some sort of proxy running
on localhost such that DNS packets from the outside need to
traverse a well locked down process running in a different
address-space and as a different user than the program that
needs to resolve a name.

An early experiment was rebound(8), written by Ted
Unangst (tedu@). It was simplistic and did not understand
DNS at all, it would just forward packets, but it would sit
between the Internet and the program.

An alternative is to run a full recursive resolver like
unbound(8) on the laptop, but this leads to problems, too.
unbound(8) expects a well working network where nothing
interferes with DNS, this is true in data centres and can be
achieved in well maintained home networks, but it is not
something we find when moving laptops to arbitrary networks
like free Wi-Fi in a hotel or at an airport.

It turns out that often the quality of the network changes
over time. When we first connect to a hotel Wi-Fi we may find
ourselves in what is referred to as a captive portal. Everything
is blocked, DNS gets intercepted, and we are redirected to a
website where we need to agree to the terms and conditions
and maybe provide our name and room number. Once we are
past that, network quality improves considerably and we are
mostly free to talk to the outside world.

This is where unwind(8) comes in. It is another privilege-
separated network daemon that provides a recursive name
server for the local machine. resolvd(8) detects when it is
running and automatically rewrites /etc/resolv.conf to
have only nameserver 127.0.0.1 listed as name server.

This solves or improves upon the first problem. Programs
that need DNS resolution are insulated from the Internet. An
attacker needs to get past unwind(8) first before they can try
to attack the libc stub resolver.

unwind(8) understands and speaks DNS and it actively
observes the network quality.

We did not write our own recursive name server. That would
be difficult and since DNS is constantly evolving, it would
also require extra work to keep up. Instead we decided to use

libunbound, which is part of unbound(8). It is developed under
a BSD license by NLnet Labs.

The resolver process pledges "stdio inet dns
rpath" and restricts access to the file system using
unveil(2) to /etc/ssl/cert.pem. This is the process
that is exposed to the Internet and handles untrusted data.
It would be preferable to have one process exposed to the
Internet and another to parse untrusted data but that is not
possible to do with libunbound.

Since we are using a real recursive name server, that gives
us many options on how we can resolve names:

• We can do our own recursion, walk down from the root
zone using qname minimization to improve privacy.

• We can use the name server we learned from dhc-
pleased(8) and slaacd(8) as forwarders, so we do not need
to do our own recursion, which might be faster.

• We can try to opportunistically speak DNS over TLS
(DoT) to the learned name servers to prevent eavesdrop-
pers from listening in.

• We can configure forwarders manually to not depend on
the network provided name servers. Those might be more
trustworthy. They can also be DoT forwarders to prevent
eavesdropping.

• As a last resort, unwind(8) can behave exactly like the
libc stub resolver4.

We call these resolving strategies and unwind(8) actively
probes if they are usable by sending test queries when it
notices that the network changed, for example because the
laptop moved to a different Wi-Fi network or woke up from
suspension. It then orders them by quality and picks the best
one.

There is an implicit skew in the strategies for finding the
best one: a manually configured DoT name server is always
considered better than a name server provided by the local
network, as long as it is available and not too slow.

unwind(8) is not too concerned about preserving privacy, it
is pragmatic and tries to resolve names the best way it can,
and it will use the local name servers provided by the network
if those are the only ones available.

Since unwind(8) uses libunbound it also supports DNSSEC.
DNSSEC provides data integrity and cryptographic authentic-
ity, it does not provide confidentiality.

unwind(8) is pragmatic about DNSSEC. When it tests
the quality of a resolving strategy it also tries to find
out if DNSSEC is available. There are many reasons why
DNSSEC might not be available: the network is misconfig-
ured, DNSSEC is blocked or the laptop does not (yet) have
the correct time. If DNSSEC does not work, unwind(8) does
not insist on using it.

Of course this makes it susceptible to a downgrade attack.
To mitigate this, unwind(8) will insist on DNSSEC working
after it has discovered once that DNSSEC is working in the

4Call this the "Dutch train problem": the free Wi-Fi on Dutch trains
do not like DNS queries with an EDNS0 option, they intercept them, do
not understand them, and answer NXDOMAIN. There are other free Wi-Fi
networks that are similarly broken.

https://man.openbsd.org/unbound.8
https://man.openbsd.org/unwind.8
https://man.openbsd.org/unbound.8
https://www.nlnetlabs.nl/

local network. This means that an attacker needs to be able to
block DNSSEC from the moment we connect to a network.
They cannot show up later and try to downgrade us. unwind(8)
will only become lenient again when we connect to a new
network.

This is not a strong mitigation of course, but DNSSEC is
not a fix for everything at the resolver. Applications also need
to do their part and decide how much they are willing to
trust DNS. For example ssh(1)’s VerifyHostKeyDNS feature
will only trust host key fingerprints it obtained from DNS if
they were validated using DNSSEC and the validator runs on
the local machine5. Otherwise it will ask the user what to do.

A worst-case scenario when joining a partially broken Wi-
Fi network with captive portal and a manually configured DoT
name server might look like this:

1) We connect to the network, we cannot reach the DoT
name server and cannot do our own recursion.

2) unwind(8) will choose the name server provided by
the network. It also notes that we just connected to a
new network so it is lenient with respect to DNSSEC
validation. In effect it will ignore validation errors.

3) We try to access a website and the captive portal
detection in the browser triggers. We click the buttons
and fill in the forms until we are allowed on the internet.

4) unwind(8) notices that it can do its own recursion.
5) At the same time, unwind(8) notices that the DoT name

server is also reachable now and starts using it.
unwind(8) does not natively support DNS over HTTPS

(DoH) and we sometimes find ourselves in networks that block
everything except for TCP port 443. One way around this is
to use dnscrypt-proxy from ports which does support DoH.
We can point unwind(8) at it by manually configuring a plain
DNS forwarder in addition to a DoT forwarder:

$ cat /etc/unwind.conf
forwarder "9.9.9.9" port 853 \
authentication name "dns.quad9.net" DoT

forwarder "2620:fe::9" port 853 \
authentication name "dns.quad9.net" DoT

dnscrypt-proxy for DoH
forwarder "127.0.0.1" port 5353

VIII. TIME FOR GELATO

There are various transition technologies that get us from
an IPv4-only Internet to an IPv6-only Internet. We will only
look at NAT64, DNS64, and 464XLAT.

NAT64 allows us to reach IPv4 hosts from an IPv6-only
network by pretending that the hosts are IPv6 enabled. IPv6
addresses are so large that we can easily encode all of IPv4 in
an IPv6 /64 prefix, which is the usual size of on IPv6 prefix
we see per layer-two network. In fact we don’t need the whole
/64, a /96 is enough to encode the whole IPv4 Internet.

Let us pretend we know the /96 prefix used for NAT64 and
the IPv4 address we want to reach. Forming an IPv6 address

5Technically not entirely true, ssh(1) trusts what libc indicates and libc
automatically trusts localhost. See trust-ad in resolv.conf(5).

for the host is then simply a bitwise-or operation of the IPv4
address with the /96 prefix, the IPv4 address fills in the lower
bits of the IPv6 prefix. This is called address synthesis.

We can then use this address to connect to the IPv4-only
host. Somewhere on the network path is the NAT64 gateway
that is dual stacked. It knows that our packets are using NAT64
because it is configured with the /96 prefix. It intercepts the
packets and forms IPv4 packets and sends them on their way.
The gateway needs to be stateful to be able to NAT the return
traffic back to us.

We use DNS to find out the IPv4 address that we want
to connect to. The local name servers that slaacd(8) learned
about would know about the NAT64 prefix used in the network
and do the address synthesis for us. This is called DNS64. The
problem with this is that the name servers spoof DNS answers,
something that DNSSEC tries to prevent. unwind(8) will detect
this and generate an error, or unwind(8) might not even talk
to the designated name servers at all.

To get around this, unwind(8) itself can detect the presence
of DNS64 on a network by asking the local name servers
for the AAAA record, i.e. the IPv6 address, for something
that is guaranteed to never have one: ipv4only.arpa. If it gets
an answer, it can reverse the address synthesis and learn the
NAT64 prefix. With that information it can do DNS64 itself
and there is no longer a problem with DNSSEC.

The downsides of this mechanism are that it is quite
complicated, it messes around with DNS, and it does not work
with IPv4 address literals. It also does not work with programs
that are fundamentally IPv4-only: ping example.com will
never work in an IPv6-only network with only NAT64 /
DNS64.

Instead of pretending that the IPv4 host we want to reach
has IPv6, we can pretend to have working IPv4 if a NAT64
gateway is present. We ask the kernel via the pf(4) firewall
to do the IPv4-to-IPv6 translation for us. The NAT64 gateway
will then do the reverse translation and send an IPv4 packet
on its way. This is called 464XLAT.

We first need an IPv4 address, RFC 7335 reserved
192.0.0.0/29 for this purpose:

ifconfig pair1 inet 192.0.0.4/29

We then need a default gateway:

ifconfig pair2 rdomain 1
ifconfig pair2 inet 192.0.0.1/29

Because pf(4) will only do address family translation on
inbound rules we need a different rdomain and use pair(4)
interfaces. We need to connect them:

ifconfig pair1 patch pair2

And then we can configure our default route:

route add -host -inet default 192.0.0.1 \
-priority 48

We set it to a very low priority6 so that it does not interfere

6Remember that a high priority value means low priority.

https://man.openbsd.org/resolv.conf.5
https://man.openbsd.org/pf.4
https://man.openbsd.org/pair.4

with routes that dhcpleased(8) configures when we move to
an IPv4 enabled network.

We then need to configure address family translation in pf(4)
when we detect NAT64 being present. This is were gelatod(8)
comes in. It is a Customer-side transLATor (CLAT) config-
uration daemon. CLAT is what 464XLAT calls the address
translation happening on the laptop.

gelatod(8) is yet another privilege-separated daemon7 that
checks for the presence of a NAT64 gateway whenever we
change networks. It does so either via the ipv4only.arpa trick
or explicitly via router advertisements. RFC 8781 specifies
how a network can signal the presence of a NAT64 gateway.

gelatod(8) needs a pf(4) anchor into which it adds rules that
are similar to this example:

pass in log quick on pair2 inet \
af-to inet6 \
from 2001:db8::da68:f613:4573:4ed0 \
to 64:ff9b::/96 \
rtable 0

The rule is doing address family translation to IPv6 on
incoming packets on pair2. In this example it uses
2001:db8::da68:f613:4573:4ed0 as the IPv6 source
address, gelatod(8) learned this from the system when
slaacd(8) configured it. 64:ff9b::/96 is the learned NAT64
prefix and we are moving traffic back to rtable 0. Remem-
ber pair2 is in rdomain 1.

While this works rather well, it is also complicated to set
up, which is why gelatod(8) is not in OpenBSD base but lives
in ports. We believe in good defaults in OpenBSD and try to
make it easy for the user.

IX. FUTURE WORK

We would like to have the functionality of gelatod(8) in
OpenBSD base. gelatod(8) was mostly a proof of concept
and we imagine that a new network device like clat(4) would
take over the role of client side address family translation. It
could be always present and gelatod(8) would just enable and
disable it. At that point we could move the functionality into
slaacd(8) and delete gelatod(8). CLAT is defined as a stateless
mechanism so it does not need the full pf(4) machinery for
address family translation.

It would be valuable to have DNS over HTTPS (DoH) and
DNS over Quic (DoQ) natively in unwind(8). We are mostly
waiting on upstream to implement support in unbound(8).

There are also minor issues that could be improved:
• The captive portal detection in unwind(8) is not perfect

and could be improved upon.
• dhcpleased(8) and slaacd(8) should remember IP ad-

dresses from networks they have been connected to
previously, to be able to quickly re-establish connectivity
by probing whether we are connecting to a previous
network while the lifetime of our addresses have not
expired yet. RFC 4436 "Detecting Network Attachment

7At this point we will not go into pledge details.

in IPv4 (DNAv4)" and RFC 6059 "Simple Procedures
for Detecting Network Attachment in IPv6" discuss the
details.

• It would be helpful if the dhcpleased(8) parent process
could be pledged. This is currently not possible because
of bpf(4). Things to investigate here are changes to the
network stack that would allow us to use raw sockets
instead of bpf(4) sockets or the ability to dup(2) an
existing bpf(4) socket and reprogram the interface it is
using.

X. CONCLUSION

In this paper we have described how OpenBSD improved
the user experience and security of laptop users when vis-
iting diverse network locations. The system remembers Wi-
Fi networks and automatically connects to them. It automat-
ically discovers when the network changes and acquires new
IPv4 and IPv6 addresses or renews existing configurations.
OpenBSD also actively probes available DNS resolving strate-
gies and picks the best one available. Privilege-separation and
restricted service operating mode ensure that untrusted data is
parsed with the least privileges necessary, protecting the rest
of the system.

ACKNOWLEDGMENT

The author would like to thank Mine Temuerhan for copy-
editing the paper.

https://github.com/fobser/gelatod/
https://man.openbsd.org/dup.2

	Join the Wi-Fi
	Stop slacking
	Dynamic host configuration, please
	Route priorities
	Cellular networks
	It is always DNS
	Let us unwind a bit
	Time for gelato
	Future work
	Conclusion

